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Abstract

The search for new pharmacologically active compounds in drug discovery programmes often neglects biopharmaceutical properties as
drug absorption. As a result, poor biopharmaceutical characteristics constitute a major reason for the low success rate for candidates in clinical
development. Since the cost of drug development is many times larger than the cost of drug discovery, predictive methodologies aiding the
selection of bioavailable drug candidates are of profound significance. This paper has been focussed on recent developments and applications
of chromatographic systems, particularly those systems based on amphiphilic structures, in the frame of alternative approaches for estimating
the transport properties of new drugs. The aim of this review is to take a critical look at the separations methods proposed for describing and
predicting drug passive permeability across gastrointestinal tract and the skin.
© 2003 Published by Elsevier B.V.
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1. Introduction

Today with the development of combinatorial chemistry
hundreds and hundreds of drugs that have potential biologi-
cal activity are synthesized. The studies involved from drug
discovery to market, which include the selection of drug can-
didates and the study of their pharmacological properties are
very expensive, time consuming and usually require the use
of experimentation animals. For ethical and/or economical
reasons, a great deal effort is currently being made to develop
in vitro systems to avoid or reduce the use of experimentation
animals and provide primary information about the capabil-
ity of new compounds in the first steps of drug development.

The drug’s overall activity cannot be considered to result
only from the specific interaction of a drug molecule at the
action site (receptor) in a tissue or cellular substrate. Several
fundamental processes determine drug action: release of the
active agent from dosage form, absorption into general cir-
culation, binding to blood proteins, distribution to the vari-
ous tissues where receptor site–drug interaction itself occurs,
drug biotransformation into its metabolites and excretion of
the unaltered drug or its biotransformation products.

Drugs can be administered by two major routes, enteral
and parenteral. Enteral route involves drug administered via
the gastrointestinal (GI) tract, also includes buccal, sublin-
gual and rectal. Parenteral applies to drugs given by other
routes, i.e. intravenous and intramuscular injections, absorp-
tion via the skin (percutaneous, intradermal and subcuta-
neous injections), inhalation, etc.

Regardless of the route of exposure, drug absorption is
a requirement for a substance to be capable of producing a
pharmacological effect. The absorption of a chemical sub-
stance from any site of exposure involves its passage across
cellular membranes[1]. Despite the diversity in membrane
functions, there is a consensus regarding their basic struc-
ture. The basic cell membrane comprises a bimolecular
lipid leaflet containing phospholipids, cholesterol and fatty
acid esters oriented with their hydrophobic portions inside
and their hydrophilic portions facing the outside aqueous
environment. Associated with the lipid molecules are glob-
ular protein molecules embedded into or passing through
the membrane.

Compounds can cross cell membranes in several ways:
passive permeation (diffusion) through the lipid bilayer, pas-
sive transport through membrane channels or pores, active
transport, facilitated transport (carrier-mediated transport)
and phagocytosis. However, most of the drugs substances
cross cells by passive permeation. In this process, a sub-
stance dissolves in the membrane lipid bilayer, permeates
through the membrane, and enters into the cytoplasm of the
cell. To establish an adequate concentration gradient for pas-
sive permeation the substance not only must be soluble in
lipids but also must be sufficient soluble in water due to the
aqueous nature of the extracellular and intracellular spaces.
Therefore, lipid–water partitioning is the more important
factor governing a substance’s ability to diffuse through cell
membranes[1,2].

The drug transport rate across membranes is quantified by
the membrane permeability coefficient,Pm. Pm is actually
the linear velocity of drug movement through the membrane
and it is lineally related with the drug membrane partition
coefficient,Km, and its membrane diffusion coefficient or
drug diffusivity, Dm:

Pm = DmKm

L
(1)

beingL the thickness of the bilayer membrane.Km is the ma-
jor source of variation of drug permeability, though drug pas-
sive diffusion through cell membranes also depends onDm.
It has been experimentally demonstrated that solute diffusiv-
ity through a lipidic membrane depends on molecular size
or molecular weight of the drugs according to the equation:

Dm = D0e−βMV (2)

whereβ is a constant,D0 the diffusivity of a hypothetical
molecule having molecular volume equal to zero, and MV
is the molar volume. For drugs with similar molecular vol-
ume, the differences in their permeability will be only due
to differences in membrane partition coefficients,Km [3].

The extent of absorption, expressed as percentage, is de-
fined as:

%A = [drug]1
[drug]1 + [drug]2

× 100 (3)
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being [drug]1 and [drug]2 the absorbed and non-absorbed
drug concentration in the absorption site, respectively.

%A is related with drug membrane partition coefficient
Km as an hyperbolic function:

%A = Km

1 + Km
× 100 (4)

Km = [drug]1
[drug]2

(5)

Physico-chemical properties are critical determinants of a
substance’s ability to be absorbed. Quantitative structure–
activity relationships (QSARs) are mathematical models that
statistically relate the biological activity of a compound to
its physico-chemical properties. Several studies have shown
their importance for the prediction of drug permeability
[4–10].

The dynamic processes of drug action are considered to
have much in common with the basic processes of chromato-
graphic/electrochromatographic separations. Under adequate
experimental conditions, the same basic properties-hydro-
phobic, electronic and steric-determine the behaviour of
chemical compounds in both the biological and chromato-
graphic/electrophoretic environments. In addition, none of
the essential chromatographic/electrophoretic or pharma-
cokinetic/pharmacodynamic processes except metabolism
implies the breaking or the formation of bonds in the
drug [11]. Therefore, chromatography and electrophore-
sis can be used as powerful techniques for estimating
physico-chemical parameters and biological activities. In
addition, chromatographic/electrophoretic techniques are
dynamic systems that permit the strict control of experimen-
tal conditions thus very reproducible retention/migration
data can be obtained. The application of retention parame-
ters to obtain descriptive and predictive models of pharma-
cological responses gives rise to a new field, quantitative
retention–activity relationships (QRARs).

In this paper the separation methods based on amphiphilic
structures developed for the obtaining of models that de-
scribe gastrointestinal and dermal drug absorption are re-
viewed.

2. In vitro methods for predicting oral drug
absorption

Oral drug delivery is the preferred route of drug adminis-
tration. The major absorption barrier to orally administered
drugs is the intestinal mucosa where drugs are generally ab-
sorbed by a passive diffusion mechanism.

In order to obtain models for predicting oral drug ab-
sorption different predictive variables have been used which
include the use of physico-chemical parameters, perme-
ability data obtained from cell culture lines or artificial
membranes, liposome–water partition coefficients and chro-
matographic/electrophoretic retention data of drugs.

In general, univariate hyperbolic models for oral drug ab-
sorption have been obtained when structural diversity is in-
troduced which agrees with the absorption-drug membrane
partition coefficients dependence (seeEq. (4)). Their main
usefulness is as fast primary screening tools that can pro-
vide key information about the potential transport proper-
ties of new compounds during the drug discovery processes.
However, they fail when factors that decrease the absorp-
tion of drugs exist, like poor dissolution of the compound,
drug precipitation at the absorption site, chemical and bac-
terial degradation at the absorption site, and the first pass
metabolism in the intestinal cells and the liver and also if
compounds are actively transported or transported by para-
cellular pathway.

2.1. QSAR models

Physico-chemical parameter-based estimations meth-
ods [4,6,12–19] are attractive because of their through-
put capacity, reproducibility and because they do not
involve cumbersome cell cultivation[20]. However, single
physico-chemical descriptors are not reliable predictive pa-
rameters of drug absorption, as the correlations often break
down when structural diversity is introduced[12,21,22]. For
this reason more complex models involving several molec-
ular descriptors such as hydrophobic parameters (logP or
logD), hydrogen-bonding ability descriptors, molecular size
(e.g. molecular weight), solubility and computational pa-
rameters derived from three-dimensional structures of drugs
(e.g. dynamic polar molecular surface area (PSAd)), have
been developed using different multivariate techniques, e.g.
multiple linear regression (MLR)[6,15,17], partial least
squares (PLS)[13,16,19] and artificial neural networks
(NN) [4].

2.2. Membrane-based permeability assays

Most of the in vitro studies examining drug uptake and
transport in the intestinal epithelium have utilised different
anatomical structures as everted sacs, brush border mem-
brane vesicles, isolated cells, and intestinal rings[23]. More
recent works have focused on Caco-2 cells, a colorectal
adenocarcinoma cell line of human origin, as a model for
studying intestinal transport[21–32]. The use of Caco-2 cell
monolayers has gained in popularity as an in vitro human
absorption surrogate. Moreover the Caco-2 cell monolayers
are generally accepted as a primary absorption screening
tool in several pharmaceutical companies. Caco-2 cells to a
certain degree mimics additional transport mechanism such
as paracellular transport trough tight-junctions, active trans-
port via transporters, as well as efflux phenomenum induced
by P-glycoproteins, the latter of which work against the per-
meability process and can complicate data interpretation for
some compounds. However, the use of Caco-2 cell lines has
several drawbacks[32]: (i) the lack of standardisation in cell
culturing and experimental procedures makes very difficult
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to compare inter-laboratory permeability data, (ii) Caco-2
cell monolayers have a laborious cultivation[20,28], the ex-
periments requires up to 20 days for the preparation of stable
monolayers, and the cells must be maintained in protective
environments, free from contamination, and examined for
tight-junction formation prior to use[32], (iii) the method
requires careful sample analysis to calculate permeability
correctly, (iv) its use as high-throughput tool is limited by
the long membrane growth cycle and high implementation
cost[33]. The use of Caco-2 continues, but the future of its
role as a primary screen is coming into question[32].

As an alternative to Caco-2 cell lines, the use of parallel
artificial membrane permeability assay (PAMPA) is gaining
acceptance. PAMPA use synthetic membranes prepared from
single or mixtures of phospholipids[32–36]. Advantages
of PAMPA versus Caco-2 cells are its wider pH-range and
higher dimethylsulfoxide content tolerability, which allows
for better coverage of intestine pH range and higher sample
solubility, respectively, low cost and easy implementation.
However PAMPA technique also present some drawbacks,
the methodology is time consuming because in addition to
the incubation time, the determination of permeability data
of each compound requires the accurate determination of
drug concentration in the donor and acceptor wells. The
results and the permeation rate depends on the nature of
support material for phospholipid membrane.

2.3. Chromatographic methods

Chromatographic models to predict drug absorption are
experimentally easier than membrane-based permeability
assays. Shared advantages of chromatographic models to
predict drug absorption are their experimental simplicity,
low cost, accuracy and high-throughput. Different chro-
matographic systems have been proposed to predict oral
drug absorption. The use of conventional reversed-phase
columns only has proven to provide adequate correlations
for homologous series of compounds. The inclusion of am-
phiphilic structures in the stationary and/or mobile phases
is a pre-requisite to emulate interactions of drugs with the
phospholipids bilayers in the membranes.

2.3.1. Immobilised artificial membrane columns
Immobilised artificial membrane columns (IAM columns)

contain different types of phospholipid monolayers that are
covalently bonded to silica particles[37–39]. IAMs may
contain a single or a mixture of phospholipids mainly phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), phos-
phatidylglycerol (PG), phosphatidic acid (PA) and phos-
phatidylserine (PS) ligands.

Pidgeon et al.[38] used anetherIAM .PCC10/C3 column
to predict drug absorption of 11 structurally cephalosporin
analogs (r2 = 0.89). A linear correlation was obtained be-
tween the permeability coefficients through Caco-2 cells
measured by Artursson et al.[21] and the retention factors
obtained at pH 7.4 (logkIAM ) for 11 unrelated drugs (r2 =

0.58). This relationship was slightly improved when correc-
tions for the size of molecules were made (logkIAM /MW)
(r2 = 0.73). A linear relationship was also found between
the percentage of absorption in perfused rat small intestine
and logkIAM at pH 5.4 (r2 = 0.63), this model was also
improved when logkIAM /MW was used instead (r2 = 0.74).

IAM methodology is experimentally simple, and
large-volume screening of experimental compounds for
drug absorption is possible. However, for hydrophobic
compounds it is necessary to obtain retention factors of
compounds at different organic modifier concentrations to
calculate by extrapolation the retention data at 0% modifier
concentration.

2.3.2. Immobilised liposome chromatography
Drug-liposome partitioning has also been used as a tool

for predicting human passive intestinal absorption[20]. Tra-
ditionally, drug-liposome studies have been carried out with
free liposomes suspended in aqueous solutions where the
partitioning of solutes between the liposome bilayers and
water is determined[20,40,41].

Immobilised liposome chromatography (ILC) uses sta-
tionary phases where liposomes are steric, hydrophobic,
electrostatic or covalently immobilised into gel beads. The
preparations of the columns is very simple and they are stable
during long time. A great advantage of ILC chromatography
respect to IAM chromatography is the absence of organic
solvents in mobile phase for eluting the most hydrophobic
compounds[42]. ILC turned to be a good approach to study
drug-membrane interactions since the phospholipids ratios
used to prepare the liposomes can be modulated to get lipo-
somes with phopholipid, protein and cholesterol ratios very
similar to the composition of the membrane of study.

The research group directed by Lundahl has developed
various techniques for immobilisation of liposomes, proteo-
liposomes, membrane vesicles and red cells/ghosts. Beigi
et al. [42] used to prepare ILC columns, egg phosphatidyl-
choline (EPC) liposomes immobilised by freeze-thawing in
small agarose-dextran gel beds (Superdex 200) which were
packed into columns. The authors found a hyperbolic re-
lationship between oral absorption in humans (%) and the
specific capacity factors obtained in ILC (logKs) for a set
of 12 unrelated drugs.

In another paper, Beigi et al.[43] compared the retention
of a set of 17 drugs on EPL (egg phospholipid liposomes)
with the retention on egg phosphatidylcholine (PC), mem-
brane lipid liposomes (ML), vesicles and ghosts and, except
PC, gave similar results. From the results, the authors con-
cluded that the essential feature of good biomembrane model
for drug partitioning analyses is a bilayer heterogeneity mim-
icking that of natural membranes. The authors also com-
pared the retention of the set of compounds on an IAM-PC
column and on the PC liposome column finding a moderate
rectilinear correlation (r2 = 0.83). The fact that no better
relationship was found despite the head-group identity be-
tween both columns supports the idea that the structure of
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the hydrophobic region is of key importance on drug parti-
tion into such lipid layers. Finally, drug retention on vesicles
was related to oral absorption in humans finding low oral
absorption at the outskirts of the range 0.6 < logKs < 3.0,
whereas drug oral absorption was nearly complete at the
intermediate logKs values (1.5–2.5). Later, the authors re-
moved several drugs showing non passive diffusion mecha-
nisms from the original model, leading to a slight decrease
of absorption for high logKs values. Österberg et al.[44]
observed that many drugs with logKs values >2.5 on PC li-
posomes were almost completely absorbed in humans, mak-
ing a dramatic absorption decrease for drugs with such high
logKs values more improbable. Drugs with logKs values
higher than 2.5 and low absorption values were found to
have efflux transport mechanism and exceptionally strong
interactions with the gel beads of the ILC columns.

Liu et al. [45] immobilised unilamellar liposomes in the
pores of gel beads by avidin–biotin binding. The membrane
partition coefficients values (logKLM ) of 29 structurally di-
verse drugs obtained on an EPC-PS-PE-chol column (EPC:
egg yolk phosphatidylcholine; PS: phosphatidylserine; PE:
phosphatidylethanolamine; chol: cholesterol) was used to
describe drug intestinal absorption obtaining a qualitative
sigmoidal relationship. Compounds showing paracellular
diffusion, efflux or active transport were found as outliers.
The logKLM values correlated well with those obtained
using surface plasmon resonance (SPR) biosensor[46],
which is another technique also used to predict oral drug
absorption.

2.3.3. Micellar chromatographic methods
Another chromatographic approach used to develop oral

drug absorption models is micellar liquid chromatography
(MLC). MLC is a mode of reversed-phase liquid chromatog-
raphy which uses a surfactant solution above the critical
micellar concentration as mobile phase[47–50]. The use
of micellar solutions produces the adsorption of surfactant
monomers to the stationary phase, thus providing it with both
hydrophobic and electronic sites of interaction. The retention
of compounds in MLC depends on their interactions with
the modified reversed stationary phase and micelles present
in the mobile phase. In MLC different surfactants-anionic,
cationic, zwitterionic and non-ionic-can be used. The ade-
quate selection of the nature of surfactant and mobile phase
composition is a key point to emulate biopartitioning pro-
cess. For structural related compounds and experimental
conditions in which all compounds present the same ionisa-
tion degree, adequate correlations can be obtained regardless
the nature of surfactant and mobile phase composition[51].
However, the use of ionic surfactants like SDS (anionic) or
CTAB (cationic) fails to describe biopartitioning process for
structurally unrelated compounds[52] and only non-ionic
surfactants are able to give good QRAR models.

Detroyer et al.[53] found linear QRAR models by corre-
lating the retention factors in MLC of six�-blocking agents
(alprenolol, atenolol, metoprolol, oxprenolol, pindolol and

practolol) and the permeability coefficients through Caco-2
monolayers (Pc) and rat intestinal segments (Papp). The mi-
cellar mobile phase used was 0.1125M SDS (pH 3)+ 10%
n-propanol. The MLC QRAR models were compared with
those obtained with logP values and the literature retention
factors on an IAM column concluding that the use of MLC
provided better correlation coefficients for that set of com-
pounds.

More recently, Detroyer et al.[54] performed a compar-
ative chemometric study on the retention behaviour of 21
basic pharmaceutical substances (seven psychotropics, one
�-adrenoreceptor agonist, eight�-adrenolytics and five an-
tihistaminic drugs) in 10 chromatographic/electrophoretic
systems. The systems studied were: MLC using 0.15 M SDS
(pH 7.4)+ 15%n-propanol as mobile phase, MEKC using
mixed micelles taurodesocycholate-phosphatidylcholine in
borate buffer at pH 8.0 as electrophoretic buffer, IAM, a chi-
ral �1-acid glycoprotein column (pH 6.5), a Suplex pKb-100
column (pHs 2.5 and 7.4), a RP-Spheri column (pHs 2.5
and 7.0), an Aluspher RP-select B column (pH 7.3) and a
Unisphere PBD column (pH 11.7).

The authors observed that for all chromatographic systems
the main retention mechanism was hydrophobicity but some
differences were observed in secondary retention mecha-
nisms. The use of amphiphilic structures in either mobile
and/or stationary phase introduced an extra interaction re-
spect to classical chromatographic systems. The amphiphilic
structures used showed to play a more important role than
the difference in technique (LC versus CE, use of adsorbed
versus permanently bound amphiphilic structures).

The capability of the chromatographic techniques studied
as tools for predicting permeability through Caco-2 mono-
layers (Pc) of five �-blocking agents (alprenolol, atenolol,
metoprolol, oxprenolol and pindolol) was studied. Linear
Pc − k or logk relationships were obtained in all cases (see
Table 1). The authors concluded that the use ofk instead
of logk as independent variable provided better correlations
and the MLC system exhibited the best results.

2.3.4. Biopartitioning micellar chromatography
Our research group has demonstrated that the retention

data obtained in a chromatographic system constituted by
a C18 reversed stationary phase and a polyoxyethylene (23)
lauryl ether (Brij35) micellar mobile phase in adequate ex-
perimental conditions are helpful in describing the biologi-
cal behaviour of different kinds of drugs[51,52,55–67]. We
call this drug biopartitioning simulation chromatographic
system biopartitioning micellar chromatography (BMC).

The usefulness of BMC in describing the biological be-
haviour of drugs could be attributed to the following features:
(i) the characteristics of the BMC systems are similar to bio-
logical barriers and extracellular fluids. First, the stationary
phase modified by hydrophobic adsorption of Brij35 surfac-
tant monomers structurally resembles the ordered array of
the membranous hydrocarbon chains. In addition, the hy-
drophilic/hydrophobic character of the adsorbed surfactant
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Table 1
Reported oral absorption QRAR models for short data series of structurally related compounds (y = a + bx)

Chromatographic
system

Independent
variable

Dependent variable (n) a ± ts (p-value) b ± ts (p-value) r2 S.E. F (p-value) RMSEC RMSECV RMSECVi

MLCa k Pc (Caco-2) (5) n.a. n.a. 0.98 n.a. n.a. n.a. n.a. n.a.
logk Pc (Caco-2) (5) n.a. n.a. 0.91 n.a. n.a. n.a. n.a. n.a.

MEKCa k Pc (Caco-2) (5) n.a. n.a. 0.88 n.a. n.a. n.a. n.a. n.a.
logk Pc (Caco-2) (5) n.a. n.a. 0.85 n.a. n.a. n.a. n.a. n.a.

IAM a k Pc (Caco-2) (5) n.a. n.a. 0.88 n.a. n.a. n.a. n.a. n.a.
logk Pc (Caco-2) (5) n.a. n.a. 0.74 n.a. n.a. n.a. n.a. n.a.

RP-HPLCa,b k Pc (Caco-2) (5) n.a. n.a. 0.79–0.93 n.a. n.a. n.a. n.a. n.a.
logk Pc (Caco-2) (5) n.a. n.a. 0.74–0.95 n.a. n.a. n.a. n.a. n.a.

BMCc logk log(Ka) (9) −1.54 ± 0.07 (<0.0001) 0.55± 0.05 (<0.0001) 0.99 0.02 618.61 (<0.0001) 0.0202 0.0255 0.0270
logk log(%A) (9) 0.84± 0.07 (<0.0001) 0.42± 0.05 (<0.0001) 0.98 0.02 366.88 (<0.0001) 0.0199 0.0297 0.0174
logk log(%FA) (8) 1.63± 0.04 (<0.0001) 0.23± 0.04 (<0.0001) 0.97 0.03 195.28 (<0.0001) 0.0257 0.0339 0.0344

a Results taken from[54].
b Seven chromatographic systems.
c Results taken from[68]—n: number of molecules included in the model; ts: 95% confidence interval for coefficient estimates;r2: r-squared statistic; S.E.: standard error of the estimate;F:

modelled-to-residual variance ratio;p-value: measure of significance of a model derived from ANOVA; RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation
(leave-one-out); RMSECVi: root mean square error of cross-validation (leave-one-out) for interpolated data; n.a.: non available data.
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monomers resembles the polar membrane regions. Second,
Brij35 micellar mobile phases prepared at the specific phys-
iological conditions could also mimic the environment of
drug biological partitioning. (ii) The retention of a drug in
this chromatographic system is mainly governed by its hy-
drophobic, electronic properties and, to a less extent, by its
steric properties. These features of compounds also deter-
mine their passive permeability across cell membranes.

In order to study the similarity between BMC and other
well-recognised natural systems that mimics biomembranes,
we correlated[68] the retention data on BMC using 0.02 M
Brij35 (pH 7.4) as mobile phase, logkBMC, for a hetero-
geneous set of 16 compounds (benzodiazepines,�-blockers
and phenothiazines) with the retention factors, logKs, on
immobilised liposome or vesicle columns of different na-
ture: lipids extracted from human red cell membrane vesi-
cles (MLs), cytoskeleton-depleted human red cell membrane
vesicles (vesicles), human red cell membranes (ghosts) and
egg phospholipid liposomes (EPLs). TheKs values were
taken from ref.[43]. Excellent linear correlations were ob-
tained in all cases (r2 ≥ 0.96) indicating that the BMC
system mimics adequately the relative importance of drugs
interactions with biomembranes.

The differences between the slopes probably reflect the
extent of polar and non-polar interactions that occur in the
naturals biomembranes. In this sense the systems BMC,
MLs and vesicles show similar hydrophilic/hydrophobic
character (slopes near 1). In ghost, the membrane with high-
est hydrophilic character, the hydrophilic interactions are
more important. On the contrary, in EPLs, probably the most
hydrophobic system mainly constituted by phosphatidyl-
choline and phosphatidylethanolamine, the hydropho-
bic interactions are more important than the hydrophilic
[43].

In the same study, the correlation between some param-
eters related to passive transport through the gastrointesti-
nal barrier, and the retention in BMC were also evaluated.
Fig. 1 shows the relationships between theKa values (ab-
sorption rate constant in rat intestine) and %A (percentage
of absorption in rat intestine in 1 h) for 9 barbiturates, %FA
(percentage of the absorbed fraction after oral administra-
tion in humans) for eight�-blockers and the logkBMC data.
Table 1shows the statistical features of these models. Strong
correlations were obtained in all cases (r2 > 0.97) and the
predictive ability of the models suggested that predictions
based on interpolations and extrapolations should be reason-
ably adequate.

In a recent article the usefulness of BMC in predicting
oral drug absorption in humans was evaluated[69]. For this
purpose 74 structurally diverse drugs absorbed by a pas-
sive process were selected. The model drugs were chosen
to cover a wide range of absorption after oral administra-
tion (16–100%) as well as a wide range of physico-chemical
properties such as hydrophobicity (logP ranged between
0.34 and 5.20) and charge (cationic, anionic and neutral
compounds).

Fig. 1. Relationships between retention data in BMC (logkBMC) and:
(A) absorption rate constant in rat intestine (Ka) for barbiturates; (B)
percentage of absorption in rat intestine of barbiturates after 1 h (%A);
(C) percentage of absorbed fraction after oral administration in humans
(%FA) for �-blocking agents. The retention was obtained in all cases
with a 0.02 M Brij35 mobile phase at pH 7.4.

Hyperbolic relationships between the retention factor of
drugs in 0.04 M Brij35 at pH 6.5 (the average pH of the
small intestine) (Fig. 2) and 7.4 (the plasmatic pH value) and
their oral drug absorption values were obtained. The initial
steep-slope of the model limits the prediction accuracy for
low to medium absorption-drugs. This fact has been also ob-
served in Caco-2, PAMPA and in situ or in vivo permeability
models. However, retention in BMC can be used to classify
drugs into two categories according to their transport prop-
erties if passive diffusion is the mechanism responsible of
absorption:

1. For drugs with retention factors ranged between 0.2 <

kBMC < 3 at pH 6.5 absorption problems can be ex-
pected. These drugs show low permeability and high
variability in the rate and extent of absorption because
of physiological factors rather than dosage form related
factors. In addition drugs in this class which have low
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Fig. 2. Oral drug absorption-kBMC model obtained using a 0.04 M Brij35
at pH 6.5.

solubility are poorly absorbed and therefore pose signif-
icant problems for effective oral delivery[30].

2. For drugs which show retention factors higher than 3
at pH 6.5 maximal oral absorption can be expected.
This drugs have high permeability and are rapidly
and completely absorbed with extents of absorption
>90%. However, if drugs have high solubility, their sys-
temic bioavailability may be limited due to first pass
metabolism (i.e. propranolol). For drugs which present
low solubility, the dissolution in the gastrointestinal
tract is the rate-limiting of the absorption processes and
variability in the absorption of this drugs may be due to
differences in formulations and physiological variables
that may influence the drug dissolution process[30].

The oral absorption-BMC retention models obtained at
pH 6.5 and 7.4, respectively, are:

oral absorption(%) = 100kBMC

(0.7 ± 0.2) + (1.02± 0.03)kBMC

(6)

wheren = 74, r2 = 0.72, S.E. = 9.8, F = 3185

oral absorption(%) = 100kBMC

(1.0 ± 0.3) + (1.00± 0.03)kBMC

(7)

where n = 74, r2 = 0.72, S.E. = 9.8, F = 3174 and
the numbers in parenthesis are the asymptotic confidence
intervals at a 95% confidence level.

Similar models can be obtained using the retention data
of a training set with a reduced number of compounds
(atenolol, chlorpromazine, hydrocortisone, imipramine,
mannitol, metoprolol, propranolol, quazepam, terbutaline
and testosterone), that allow us to check the model along
the time. These models can be used to predict the oral ab-
sorption of new drugs. The confidence limits for predictions
are ±16%, which are in the usual range of the reported
absorption values.

The comparison between the oral drug absorption mod-
els obtained using the retention data in BMC and apparent
permeability in Caco-2 cells[31] and PAMPA membranes
[33] for the same set of compounds (Fig. 3) showed similar
trends in both cases. In addition, better statistically models
were obtained using the retention in BMC.

In comparison with the membrane based permeability sys-
tems, the retention in BMC offers several advantages: the
preparation of the chromatographic system is rapid, simple
and economical, the reproducibility intra- and inter-day of
the retention data is very high (CV lower than 5%) that per-
mits the oral absorption estimation without need of a previ-
ous system calibration.

3. In vitro methods for predicting drug skin
permeability

The penetration of chemicals through the skin is an area
of increasing interest to the pharmaceutical and cosmetic
industries, as well as in dermal exposure and risk assess-
ment processes. However, measurement of the penetration
of chemicals through skin is laborious and can involve eth-
ical difficulties with either human or animal experiments.
Hence there is a need for in vitro methods capable of pre-
dicting dermal absorption.

The skin has two basic layers, the epidermis and the der-
mis, and contains some appendages (hair follicles, sebaceous
glands and sweat glands) that provide aqueous channels into
the skin. For a substance to be absorbed into the body fol-
lowing dermal exposure, it must initially dissolve in the stra-
tum corneum (the outermost sub-layer of the skin), and then
diffuse through the remaining sub-layers of the epidermis
and into the dermis, where it will eventually diffuse into the
blood capillaries. The stratum corneum, which consists of
densely packed, dead, keratinized cells, is thought to provide
the major barrier in solute penetration. Diffusion through the
highly lipophilic stratum corneum, can occur only by pas-
sive diffusion. Passage through the remaining sub-layers of
the skin, progressively less lipophilic, is much more rapid
[1].

Measurements of the percutaneous absorption of chemi-
cals, expressed either as percent of absorption or as perme-
ability coefficient (Kp), has been achieved using numerous
in vivo experiments, by monitoring in vivo drug release in
live animals or human volunteers, ex vivo, by employing ex-
cised skin from human or animal sources, and in vitro, using
techniques such as synthetic model membranes as diffusion
barriers[70,71]. Schmook et al. compared various types of
skin that could serve as a replacement for human skin in in
vitro penetration studies[72]. They studied the penetration
properties of human, pig and rat skin, a living skin equiva-
lent (GraftskinTM LSETM) and a human reconstructed epi-
dermis SkinethicTM HRE. The authors found that among all
these skin types, pig skin is the most suitable model for sub-
stituting human skin.
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Fig. 3. Comparison between the oral drug absorption models obtained using: (A) retention data in BMC using a 0.04 M Brij35 mobile phase at pH 7.4
(B) and apparent permeability in Caco-2 cell lines for the same set of compounds. A similar comparison is made between the BMC (C) and the PAMPA
(D) models. The PAMPAPapp values represent the highest permeability value obtained between pH 5.5 and 7.4.

3.1. QSAR models

The rate,Kp, and amount of percutaneous absorption of a
compound highly depends on both the physiologic charac-
teristics of the skin (e.g. skin thickness, hydration and tem-
perature) and the physico-chemical nature of the compound
(e.g. hydrophobicity, polarity, physical state, water solubil-
ity and molecular weight or size)[73].

From the current literature, two general types of
structure-activity models, empirical and theoretical, have
been proposed to estimate skin permeability coefficients of
chemicals[73]. Theoretical skin permeability models are
deduced taking into account the possible routes of penetra-
tion and the interactions between the permeating chemicals

and the skin constituents. On the other hand empirical mod-
els attempt to relate experimental permeability constant
values, logKp, to several physico-chemical parameters as
octanol–water partition coefficient[74–77], molecular size
descriptors[73,78,79] (i.e. molecular weight, molecular
volume, molar refractivity and molecular connectivity in-
dexes) or hydrogen bond descriptors[79–89] (the number
of hydrogen bonds that may be formed by a compound (Hb)
[80], hydrogen bond donor (Hd) and acceptor (Ha) ability
of a compound[81,82], the HYBOT plus series of descrip-
tors introduced by Raevsky et al.[83] and melting point of
the chemicals as suggested by Moss et al.[84]. This type
of approach can be useful to obtain a first crude estimate of
the permeability coefficient of many compounds.
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3.2. Chromatographic methods

In comparison with oral drug absorption QRAR models,
few chromatographic studies have been carried out to de-
scribe and predict drug skin permeability.

3.2.1. Immobilised artificial membrane columns
Nasal et al.[90] correlated the retention data on an IAM

column (logkIAM ) for several sets of structurally related
compounds with their corresponding human skin permeabil-
ity coefficients (logKp). For a set of 10 steroids, good linear
correlation was obtained (r2 = 0.89). For 14 phenolic com-
pounds a parabolic relationship was obtained, (r2 = 0.64)
giving a much better fit when the traditional octanol–water
partition coefficient was used (r2 = 0.89). On the contrary,
good correlation between logKp and logkIAM for 5 com-
pounds that permeate through human skin in ionised form
(r2 = 0.82) was found and no correlation was obtained
when the permeability was plotted against logP. This fact
could indicate that retention on IAM phases seems to be
more adequate approach for the description and prediction
of bioactivities for the ionised compounds.

Barbato et al.[91] studied the relationships between the
skin permeability of a set of 12 structurally unrelated drugs
and their corresponding retention on an IAM column. No
correlation was found betweenKp and kw thus indicating
that retention on IAM column cannot account for all fac-
tors affecting the permeation of these compounds through
human skin. A subsequent variable (�logkw) representing
the differences betweenkw values experimentally obtained
and those expected from their logP values was derived.
The authors indicate that this variable describes electrostatic
and hydrogen-bonding interactions between solutes and the
phospholipid head-groups in the IAM phase. However, in
order to confirm the usefulness of this kind of IAM approach
to predict skin permeability, larger dataset of compounds
including both charged and neutral compounds at pH 5.5
(dermal pH) should be included.

In order to obtain a chromatographic model of percu-
taneous permeation closer to skin composition an attempt
was undertaken by Turowski and Kaliszan to produce HPLC
columns comprising keratin[92] since this protein is present
in large amounts in the outermost layers of the epidermis.
This approach consist on physically immobilise keratin onto
chromatographic silica. When using a combination model of
logkIAM and logkkeratin for 17 structurally unrelated com-
pounds, the predictive model for the human skin permeabil-
ity, expressed as logKp, slightly improved comparing to the
model using logkIAM solely as predictive variable:

log Kp = (−6.42± 0.14) + (1.46± 0.14)logkIAM (8)

wheren = 17, r2 = 0.81, S.E. = 0.47, p-value< 10−4

logKp = (−6.56± 0.13) + (1.9 ± 0.2)logkIAM

− (1.0 ± 0.4)logkkeratin (9)

wheren = 17, r2 = 0.87, S.E. = 0.40, p-value< 10−4.

The new keratin based phase strongly retains acidic so-
lutes and may be used to quantify differences in drug inter-
action with keratin.

3.2.2. Biopartitioning micellar chromatography
Mart́ınez-Pla et al.[93] developed a QRAR model based

on BMC to describe and predict skin permeability. For this
purpose, a set of 42 unrelated chemicals (cationic, anionic
and neutral) that covered a wide range of skin permeabil-
ity values (logKp ranged between−5 to 0, Kp expressed
in cm h−1) was selected and their retention in BMC using
0.04 M Brij35 at pH 5.5 was obtained.

In order to study the importance of variables in the pre-
diction of skin permeability values (Y-block), a partial least
squares analysis (PLS) was performed. The variables of
compounds included in the X-block were: logkBMC using
0.04 M Brij35 at pH 5.5 mobile phase, steric descriptors as
molecular weight (MW), molar refractivity (MR), molar vol-
ume (MV) and parachor (Pr); electronic parameters as the
polarizability, molar total charge (α) and the number of hy-
drogen bond donors per molecule (HBD) and physical prop-
erties as water solubility and melting point (MP). A high
correlation between all the steric descriptors, polarizability
and melting point was observed. Non-significant variables
were eliminated step by step, re-analysing each time the PLS
model. Finally a PLS model was obtained by using the three
significant predictor variables logkBMC, melting point and
molecular weight. The stepwise multiple linear regression
method provided a final model where logkBMC and melting
point (MP) were selected as predictive variables. Melting
point is a physico-chemical property strongly dependent on
molecular weight and hydrogen-bonding. The equation of
the fitted MLR model was:

logKp = (−3.3 ± 0.3) + (1.3 ± 0.2)logkBMC

− (0.0080± 0.0014)MP (10)

where n = 42, r2 = 0.83, S.E. = 0.51, F = 93,
p-value< 10−4.

All the regression coefficients and the model resulted to
be statistically significant at the 99% of confidence level,
(P < 0.0001). The explained variance was 83%, this value
is considered adequate for skin permeability data taking into
account the intrinsic variability ofKp data available (approx-
imately 25%,[84]), due to inherent variability in the tissue
used and experimental conditions.

Fig. 4shows the experimental versus predicted (fitted and
cross-validated) values of permeability constants. The inter-
cept was statistically equal to zero (0.0± 0.4) and the slope
statistically equal to one (1.00± 0.15). Thus, the proposed
retention-skin permeability model adequately describes and
predicts skin permeability of drugs. In order to check this
statement, the predicted permeability values for a set of
non-steroidal anti-inflammatory drugs and opioid analgetics
non-included in the construction of the model were com-
pared with those reported in bibliography observing a rea-
sonably good concordance.
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Fig. 4. Validation plot of the QRAR skin permeability model obtained
using a 0.04 M Brij35 mobile phase at pH 5.5: experimentally observed
vs. predicted logKp values. Fitted (�, solid line) and cross-validated (×,
dashed line) values.

An important advantage of the proposed QRAR model
based on BMC is that it can be used for the prediction of skin
permeability at any pH. For this purpose it would be enough
to measure the retention at the desired pH and interpolate in
the proposed QRAR model.

4. Progress on the development of biopartitioning
capillary electrophoretic systems for modelling drug
absorption

Recently, capillary electrophoresis (CE) has been applied
as a nanoscale analytical tool for the study of interactions
between drugs and proteins[94], liposomes[95], vesicles
[96] and micellar aggregates[97,98]. The migration index
(MI) obtained in microemulsion electrokinetic chromatogra-
phy (MEEKC) has proven to provide a highly reproducible
hydrophobicity scale[99]. Good correlations between MI
and logP, liposome–water partition coefficients, retention
data in IAM and�1-acid glycoprotein (�1-AGP) columns
have been reported[100].

Liposome electrokinetic chromatography (LEKC) is
another approach to determine liposome–water partition
coefficients. In this technique liposomes are added to the
electrophoretic buffers. The liposomes act as a pseudo
stationary phase where solutes are separated according
to their differences in electrophoretic mobilities and in
liposome–water partitioning coefficients. LEKC does not
provide any particular advantage as an analytical technique
but it is a powerful tool for the study of drug membrane
interactions[101,102]. In contrast to IAM and ILC, LEKC
is a solution-based technique, i.e. no solid stationary phase
is present in the system. Thus, it provides better flexibility
and versatility over IAM and ILC.

5. Quantification, validation and evaluation of
predictive models

A prior estimation of a drug biological activity or prop-
erty, avoiding the use of expensive, tedious and sometimes
irreproducible experiments (i.e. animals, cell lines), is
the objective of some research areas such as QSAR (i.e.
physico-chemical or structural descriptors, computer pro-
grams) and QRAR (i.e. retention factors, electrophoretic
mobility). Two reasons to estimate in these ways a biologi-
cal endpoint are speed and economy. A third would be the
reliability, since in vivo measurements have some practi-
cal problems affecting data quality; however, this aspect
deserves more attention. For instance, the usual strategy
(due the lack of ‘accepted reference’ or ‘conventional true’
biological data) involves the use of some experimental bio-
logical activities in the process of estimating future ones; so
the problem to solve is included into the process of solution.

Cronin and Schultz have recently pointed-out some usual
pitfalls (also bad practices) related to QSAR[103]. They fo-
cus the problems in three items: biological data, descriptors
and statistics. Part (not all) of these observations, would also
be applicable to QRAR models. Particular aspects related
to reliability of QRAR (compared to QSAR) models have
recently been reviewed[66]. A possible protocol to model
biological data, which summarises the information on those
reviews, is presented and commented (critical aspects affect-
ing analyst’s decision-making) inTable 2.

Step 1 requires the unambiguous definition of biological
endpoint and the selection of a single experimental, prefer-
ably standardised, protocol. In step 2, the use of compi-
lation databases from open literature, which provide large
endpoint uncertainties, has been not recommended[103].
However, the risk of undetectable laboratory (systematic)
errors, intrinsic to the data generated ‘in-house’ (single lab-
oratory data sets) has also to be considered. Probably, data
obtained in well-controlled collaborative studies (or peer
verified method program) can be a suitable solution to ob-
tain biological data with reasonable quality. When possible,
general models based in heterogeneous groups of drugs are
preferable, as occurs for instance with a drug oral absorption
model [69]. However, in other cases, it is only possible to
make individual models for a set of homogeneous drugs. In
the later case, the probability of having to work with ‘short
data series’, with their corresponding risks[66], increases.
In addition, similarities between models for different drugs
families or for different properties for a family increase the
confidence of the results, as occurs for three models relat-
ing neuroleptic effect duration, ED50 and IC50 of a set of
phenothiazines using logk in BMC conditions[66].

Steps 3 and 4 are the key of the process. The use of as few
descriptors as possible, preferably fundamental ones in order
to obtain simple transparent models (i.e. in order of pref-
erence MLR> PLS > NN), which can generate globally
interpretable, sometimes portable (simple equations) mod-
els, have been recommended[103]. However, MLR-QSAR



32 L. Escuder-Gilabert et al. / J. Chromatogr. B 797 (2003) 21–35

Table 2
Protocol for modelling drug biological data

Step Critical and decision-making aspects

1. Define unambiguously the endpoint (response
variable, vectory)

It would be consistent with a single experimental, preferably standardised, protocol

2. Select the appropriate biological data to obtainy Single laboratory data sets vs. compilation databases from open literature
Homogeneous vs. heterogeneous (i.e. more than a family of drugs) data sets
Number of data available (’large’ vs. ’short’ data series)

3. Select the appropriate descriptors (predictor
variables, matrixX)

Large vs. selected number of descriptors

Descriptors capable of mechanistic evaluation (i.e. logP) vs. descriptors difficult to
interpret (i.e. molecular conectivities)
Estimated descriptor (software) vs. experimental (i.e. logk)

4. Develop a model to predict future biological
data (̂y = Xb + e)

Qualitative (SAR, RAR) vs. quantitative (QSAR, QRAR) relationships

Linear vs. non-linear algorithms
Simple transparent (i.e. univariate equation based in logP, logk) vs. complex (i.e.
PLS, NN) models

5. Identify outliers Statistical vs. explainable outliers
Outliers associated toy vs. X data
Elimination vs. keeping into model

6. Validate the model Statistical fit (i.e.r2, or preferablyr2-adj., S.E.,F, RMSEC) vs. cross-validation (i.e.
RMSECV and RMSECVi) or independent data set-validation (i.e. RMSEP)
Significance of coefficients (b)

7. Use the model to perform future estimation (ŷ) Uncertainty ofy-estimations (̂y)
Interpolation vs. extrapolation

8. Update the model It would be necessary to include new or improved information iny and/orX data to
confirm or actualise (or refuse) old models

b: vector of coefficients;e: vector ofy-residuals;r2-adj.: coefficient of determination adjusted for degrees of freedom; RMSEP: root-mean-square error in
prediction; MLR: multiple linear regression; PLS: partial least squares; NN: neural networks; SAR: structure–activity relationships; RAR: retention–activity
relationships; seeTable 1for further details.

models can fail in the cases of collinearity, non-linearities
and ‘short data series’[66,103]. QRAR models based on
logk can overcome those problems[103], still conserving
simplicity, transparency and interpretability (i.e. logk in
BMC conditions has been related mainly to fundamental
properties as logP and charge[55]).

On the other hand, the obsession for obtaining a nice
statistical fit in QSAR or QRAR models, does not justify
sacrificing the simplicity of the model, for instance, includ-
ing more and more descriptors. Particularly when in many
situations qualitative relationships are also valuable[66],
sometimes inevitable, according with uncertainty in the data,
changes in they–X trend, etc. In addition, the reliability of a
quantitative model depends on the presence of outliers (step
5) and on the validation (step 6) and predictive ability (step
7) of the model. Outliers that can be explained (i.e. particu-
lar mechanism of action or physical effects) can be removed.
Otherwise, it is not justifiable their elimination although it
improves the statistical fit[103], specially when statistical
fit has poor validation capacity and cross-validation or ex-
ternal validation are preferable[66,103]. The use of QRAR
models based on a single descriptor (i.e. logk) facilitates the
identification ofy-outliers, sinceX-outliers are improbable
(high precision is attributed to chromatography) or at least

easily to detect (repeating the experiment due to its rapid-
ity). The more complex the model is (i.e. QSAR) the more
difficult is to associate the outlier nature since bothy and
X (various variables) are subjected to errors. In this case,
tools as PLS (better than MLR and NN) can facilitate the
identification of outliers.

The indispensable tasks of reliably determining the signif-
icance of coefficients and uncertainty of future predictions
can fail using the classical MLR-QSAR due to collinearity
(PLS can be preferable in such instances). Again, this task
is simple in those cases in which a univariate linear or poly-
nomial relationship can be modelled (i.e. using log k data)
[66]. At this point, the modeller do not have to expect a
better prediction limits than the own uncertainty in the data
(particularlyy-errors), which is also related to the degree of
elimination of outliers[103].

6. Conclusions

Pharmaceutical companies spend hundreds of millions of
dollars developing drugs to be administered orally. On the
other hand, the penetration of chemicals through the skin
is an area of increasing interest to the pharmaceutical and
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cosmetic industries. Drug candidates are screened for their
absorption potential (mainly oral absorption) early in the dis-
covery and development phase, when investment in a com-
pound is low, as a filter to identify drug candidates.

Different permeability techniques have been described in
the literature, but most of them require too much material
for analysis or cannot be implemented in a high-throughput
environment.

Biopartitioning chromatographic systems which encom-
passes the main interactions between a drug and biological
membranes (hydrophobic, electronic and steric contribu-
tions), preserve the intrinsic advantages of HPLC measure-
ments as reproducibility, speed, an easy automation. These
features guarantee their progressive incorporation into the
drug discovery and development schemes.

7. Nomenclature

%A, %FA percentage of absorbed fraction of drug
D0 diffusivity of a hypothetical molecule

with a molecular volume equal to zero
Dm membrane diffusion coefficient or drug

diffusivity
logD logarithm of the partition coefficient in the

system octanol–water at a given pH
Ha hydrogen bond acceptor ability
Hb number of hydrogen bonds that may be

formed by a compound
Hd hydrogen bond donor ability
k retention factor (kIAM measured in IAM;

kBMC measured in BMC;kkeratin measured
on a column with immobilised keratin)

Ka absorption rate constant
KLM membrane partition coefficients

(measured in ILC)
Km membrane partition coefficient
Kp skin permeability coefficient
Ks specific capacity factors (measured in ILC)
kw retention factor extrapolated to

pure aqueous medium
Pc, Papp permeability coefficients through Caco-2

monolayers or intestinal segments
Pm membrane permeability coefficient
Pr parachor
logP logarithm of the partition coefficient in

the system octanol-water

Greek letter
α molar total charge
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